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Abstract
We develop an analytical model to describe crystal nucleation in suspensions
of charged colloidal particles. The particles are assumed to interact with
a repulsive hard-core Yukawa potential. The thermodynamic properties of
the suspensions are determined by mapping onto an effective hard-sphere
system using perturbation theory. Hydrodynamic effects are calculated by
approximating particle interactions with the excluded shell potential. The rates
of particle aggregation and dissociation from cluster surfaces in supersaturated
suspensions are determined by solving the diffusion and Smoluchowski
equations, respectively, which allow the calculation of pseudo-steady rates of
crystal nucleation. By decoupling thermodynamic and hydrodynamic effects,
we find intriguing non-monotonic dependencies of the nucleation rate on the
strength and the range of particle repulsions. In particular, we find that the
rate at any effective hard-sphere volume fraction can be lower than that of
the hard-sphere system at that volume fraction. Model calculations are in
qualitative agreement with recent experiments and semi-quantitative agreement
with simulations.

1. Introduction

At a fixed temperature, increasing the concentration of particles in a suspension of uniformly
charged colloidal particles results in a crystallization transition analogous to the entropic
order–disorder transition in hard-sphere suspensions [1–8]. While the hard-sphere case is
well understood, a consistent description of the crystallization of charged sphere suspensions,
applicable over wide ranges of particle volume fractions and strengths and ranges of particle
repulsions, is yet to be developed. When particles experience short-range repulsions, the
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equilibrium thermodynamics of this crystallization transition is captured by theories developed
for hard-sphere suspensions by treating the charged particles as effective hard spheres of larger
sizes [1]. Encouraged by this generalization, attempts have been made to understand the
kinetics of crystallization in charged colloidal suspensions using the effective hard-sphere
description [9–11]. Unlike crystal nucleation in hard-sphere suspensions, which is extremely
well studied [9, 10, 12–15], crystal nucleation in charged colloidal suspensions remains poorly
explored, leaving limited studies to rigorously test the effective hard-sphere description. Recent
experiments and simulations reveal that significant differences exist between the kinetics of
crystallization in hard-sphere and charged-sphere suspensions [9–11, 16, 17].

Chief among the differences between hard-sphere and charged-sphere suspensions is
the dependence of the nucleation rate, J , defined as the rate at which stable crystals form
in a unit volume of the suspension, on the particle volume fraction, φ. For hard-sphere
suspensions, J passes through a maximum upon increasing φ above the solubility boundary,
φs = 0.495 [9, 14]. For small increases in φ above φs , the thermodynamic driving force
for crystallization increases, resulting in an increase in J . For larger increases, however, the
suspensions become increasingly crowded. As the random close packing volume fraction for
hard-spheres, φcp = 0.64, is approached, the particle mobility is drastically reduced causing J
to decrease. In fact, a glass transition is observed at φ ∼ 0.58, where particle motion is arrested
over any measurable timescale [18]. As a result of these competing influences, a maximum in
J occurs at φ ∼ 0.55 for hard-sphere suspensions. For charged colloidal suspensions, in the
limited studies conducted so far, the location of this maximum is found to depend sensitively
on the strength and the range of the repulsions, and is often not observed [9–11, 16, 17].

A plausible explanation for this difference is that for charged systems, φs can be orders of
magnitude lower than 0.495 [1–8]. As a result, hydrodynamic effects due to particle crowding
do not influence crystal nucleation except for very large increases in φ above φs . J therefore
increases monotonically with φ over a wider range of particle concentrations. This qualitative
difference is also manifested in the different dependencies of other measures of nucleation
kinetics, such as induction times and crystal growth velocities, on the particle volume fraction
observed in hard-sphere and charged-sphere suspensions [9–11, 16, 17]. At the same time,
in the effective hard-sphere model, the particles look thermodynamically larger than the core
size due to the electrostatic repulsions. Thus as the effective hard-sphere volume fraction
approaches 0.58, glasses are expected to form independent of hydrodynamic interactions.
Indeed, glasses are observed in charged colloidal suspensions at values of φ comparable to
φs when φs � 1 [2, 16]. Nucleation is suppressed under these conditions, although the
maximum in J may not occur until much later than an effective volume fraction of ∼0.55.
This suggests that a subtle interplay of hydrodynamic and thermodynamic effects underlies
phase transitions, and particularly their kinetics, in charged systems. Here, we explore the role
of hydrodynamic and thermodynamic effects in the kinetics of crystal nucleation in charged
colloidal suspensions.

In an attempt to formalize the differences between hard-sphere and charged-sphere
suspensions, Russel [10] proposed an adaptation of classical nucleation theory to predict crystal
nucleation and growth rates in these suspensions. In this adaptation, approximate expressions
for the self-diffusivity of particles in dense suspensions are employed to describe the motion of
hard-sphere particles during crystallization,whereas the Stokes–Einstein diffusivity,applicable
in the dilute limit, is assumed to describe the motion of charged particles. Model predictions
of growth rates capture the qualitative distinctions between hard-sphere and charged-sphere
systems, but quantitative comparisons require adjustable parameters.

Auer and Frenkel [19] recently conducted simulation studies using the Yukawa potential
to describe pair interactions. The Yukawa potential is a standard model to describe
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weak electrostatic repulsions between charged particles in suspension. Again, classical
nucleation theory with an approximate expression for the particle self-diffusivity to account
for hydrodynamic interactions is employed to determine steady state nucleation rates.
Interestingly, depending on the strength and the range of the repulsive interactions, drastically
different nucleation rates are predicted at similar supersaturations. In particular, a non-
monotonic dependence on the range of the repulsion is observed: at any supersaturation,
the nucleation rate first increases and then decreases as the range is increased. In all cases, the
rates are consistently higher than those for hard-sphere suspensions.

The Yukawa system is known to display solid–solid (bcc–fcc) transitions as, depending
on the strength and the range of particle interactions, either the bcc or the fcc structure is the
thermodynamically stable solid state [2, 7, 8]. Interestingly, however, the simulations of Auer
and Frenkel reveal that regardless of the stable state, the initial crystal nuclei always have a
bcc structure. Auer and Frenkel compare their estimates of nucleation rates to the experiments
of Gasser et al [20] and find significant discrepancies. They attribute the discrepancies to the
density dependence of particle interactions not accounted for in their simulations.

The discrepancies between model predictions and experiments and between simulations
and experiments leave unclear the ability of classical nucleation theory to describe nucleation
kinetics in charged colloidal suspensions. Motivated by the limitations of classical theories,
we recently developed a kinetic approach for calculating nucleation rates in hard-sphere
suspensions [12, 13]. In this approach, particle gradient diffusivity rather than self-diffusivity
is assumed to dictate particle motion during crystallization. Crystal nucleation is described as
the result of a competition between two processes: the aggregation of single particles onto, and
the dissociation of single particles from, cluster surfaces. Based on descriptions of the rates of
these processes, population balance is used to determine the time evolution of the cluster size
distribution during crystallization. This allows calculation of the quantities measured in light
scattering experiments commonly employed to probe the kinetics of colloidal crystallization.
Model calculations are in excellent agreement with experimental estimates of nucleation rates,
induction times, and crystal growth rates in hard-sphere suspensions.

In this paper, we extend the kinetic approach to charged colloidal suspensions. Key to
this adaptation is to account correctly for the distinct φ dependencies of the thermodynamic
and hydrodynamic interactions that affect crystal nucleation kinetics in these suspensions.
Drawing from previous studies [1], we argue that the effective hard-sphere volume fraction,
φe f f , determines the thermodynamic driving force for crystallization, whereas hydrodynamic
effects depend on the actual particle volume fraction, φ. Assuming particles interact with
the Yukawa potential, we determine φe f f using the perturbation theory developed by Kang
et al [21]. The thermodynamic driving force for crystallization is then obtained from theories
for hard-sphere suspensions. In doing so, we ignore the subtle differences arising from the
variable structure of the stable solid state, i.e., bcc or fcc. This limits our studies to cases
where the range of the repulsion is relatively small compared to the particle size, as is often
the case where colloidal crystals are observed experimentally [20]. To quantify hydrodynamic
effects, the gradient diffusivity of the particles is determined as a function of φ by representing
particle interactions with an excluded shell potential [1]. The rates of particle aggregation and
dissociation processes are then determined as for hard-sphere suspensions. This allows the
calculation of pseudo-steady-state rates of crystal nucleation in charged colloidal suspensions.

These calculations suggest that intriguing effects arise due to the decoupling of
thermodynamic and hydrodynamic effects in charged systems. In agreement with the
simulations of Auer and Frenkel [19], we find that drastically different rates result at identical
supersaturations as the strength and the range of particle interactions are varied. In addition,
we find non-monotonic dependencies of the rates on both the strength and the range of particle
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interactions. In contrast to the simulations, however, we find that the rates can be lower
than those observed for hard-sphere systems. This we attribute to the diminishing near field
hydrodynamic interactions as the particles become more repulsive, which allows particles
on cluster surfaces to dissociate at enhanced rates. Finally, we find that the maximum in
the nucleation rate observed for hard-sphere suspensions gradually shifts to higher φef f as
the particles become more repulsive, explaining why in many of the reported observations the
maximum is missed. Comparisons indicate that model predictions are in qualitative agreement
with experiments and semi-quantitative agreement with simulations.

The paper is organized as follows. In section 2, we outline the perturbation theory of
Kang et al for calculating the effective hard-sphere size for repulsive particles and describe
the resulting equilibrium thermodynamics of charged colloidal suspensions. In section 3, we
develop our description of the kinetics of crystal nucleation in these suspensions. We present
model calculations of nucleation rates in section 4 and compare them with experiments and
simulations in section 5. Our conclusions are summarized in section 6.

2. Equilibrium thermodynamics

We consider a suspension of uniformly charged colloidal particles of hard-core radii a
occupying a volume fraction φ. The pair interactions of the particles in suspension are well
approximated by the hard-core Yukawa potential [1–8]:

V (r)

kT
=




∞ r � 2a
ε

kT

exp(−κ(r/2a − 1))

r/2a
r > 2a

(1)

where r is the centre-to-centre separation of a pair of particles, ε is the strength of the repulsive
interactions, κ is the inverse screening length, and kT is the product of Boltzmann’s constant
and absolute temperature. ε and κ depend on the charge on the particles (or their surface
potential), the particle size, and the concentration of ions in the suspension, and in less
well understood ways on the particle concentration. In the limit of very short-range, weak
repulsions, where ε → 0 and κ → ∞, the Yukawa potential reduces to the hard-sphere
potential.

Solution thermodynamics and equilibrium phase behaviour of charged colloidal
suspensions have been investigated experimentally [1–6] and numerically [5–8]. When the
concentration of added ions is high,which strongly screens the electrostatic repulsions between
the particles, increasing φ results in a fluid–fcc solid transition. At low ionic strengths, a fluid–
bcc solid transition is observed upon increasing φ. Increasing φ further in the latter case causes
a structural transition from bcc to fcc of the solid in equilibrium with the fluid. A triple point
occurs where the fluid, fcc solid and the bcc solid coexist. Recent simulations of the Yukawa
system suggest that the fluid–fcc solid transition becomes preferred again at very low ionic
strengths, and multiple triple points are identified [8]. However, this re-entrant fcc–bcc–fcc
transition has not been observed experimentally.

Currently, no satisfactory descriptions of the solid–solid transition in charged colloidal
suspensions exist. To understand the fluid–solid phase transition, Russel et al [1] developed a
perturbation theory approach to determine the effective hard-sphere size of the charged particles
in suspension. Solution properties are then determined as the properties of the effective hard-
sphere suspension. Russel et al found that this approach captured the phase behaviour reported
by Hachisu et al [3] quite accurately. However, the approach fails to capture the observations
of Monovoukas and Gast [2], who found their data to be in excellent agreement with the
simulations of Robbins et al [7]. The latter simulations assumed point particles (no hard core)
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and are therefore accurate representations of charged particles at low volume fractions and
long-range repulsions (low screening). The perturbation theory of Russel et al [1], on the
other hand, works best for moderate volume fraction samples with highly screened repulsions,
where the particles are expected to behave like effective hard spheres. In the limit of low
screening, the tail of the perturbation becomes important, and for very high volume fractions,
the theory predicts an unphysical overlap of the effective hard spheres.

In an attempt to reconcile these differences, Voegtli and Zukoski [5] developed a
perturbation approach, where, following Kang et al [21], the effective hard-sphere diameter is
determined in a way that prevents the overlap of effective hard spheres until the true hard cores
of the particles are close packed. The solution properties are then determined by accounting
for the contributions of both the effective hard-sphere and the repulsive tail of the interactions.
The resulting predictions capture their own data [5, 6] and the data of Hachisu et al [3],
Monovoukas and Gast [2], and the simulation data of Robbins et al [7]. However, the theory
is based on a description of pair interactions alone and as such does not account explicitly
for electroneutrality [6]. It is therefore accurate for cases where the ionic strength is well
determined by the background salt and the screening from counter ions balancing the charge
on the particles is negligible.

Here, we follow Voegtli and Zukoski [5] and Kang et al [21] to determine how the effective
hard-sphere size will vary with volume fraction. The theory of Kang et al is especially useful
in the dense limit as in the case of crystallization. According to Kang et al, the effective hard-
sphere radius, aef f , of the charged particles interacting with the Yukawa potential is given
by:

aef f = aB H

(
1 +

σ1δ

2σo

)
(2)

where

aB H = 1

2

∫ λ

0
dr

(
1 − exp

(
− Vo(r)

kT

))
(3)

and

Vo(r) = V (r) − V (λ) + (λ − r)

[
dV (r)

dr

]
r=λ

. (4)

Here, V (r) is given by equation (1) and

λ

2a
= 21/6

(
π

6φ

)1/3

. (5)

The remaining terms in equation (2) are determined as:

δ =
∫ λ

0
dr

(
r

2aB H
− 1

)2 d

dr

[
exp

(
− Vo(r)

kT

)]
(6)

σo = 1 − φef f /2

(1 − φe f f )3
(7)

and

σ1 = 2 − 7.5φef f + 0.5φ2
ef f − 5.7865φ3

ef f − 1.51φ4
ef f

(1 − φe f f )4
(8)

where φef f is the effective hard-sphere volume fraction of the particles given by

φe f f = σ 3φ (9)
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with σ = aef f /a. Solving the above set of equations, the effective hard-sphere radius, aef f ,
and therefore the ratio σ , can be determined as a function of φ, a, and the interaction parameters
ε and κ . The model developed by Voegtli and Zukoski [5] then allows the determination of the
thermodynamic properties and the resulting phase behaviour of the suspension. However, this
requires intensive numerical effort. In the limit of high screening and low charge, Voegtli
and Zukoski [5, 6] found that, as suggested by Russel et al [1], the phase behaviour is
well approximated by mapping onto the effective hard-sphere suspension and neglecting
the repulsive tail. Here, we choose the effective hard-sphere description to determine the
thermodynamic properties of charged systems. This requires little numerical effort compared
to the full-blown perturbation theory calculations, and yet allows us to explore the effects of
the strength and range of particle repulsions on the kinetics of crystal nucleation in charged
colloidal suspensions, which forms the aim of this paper.

In the effective hard-sphere description, the osmotic pressure, Pf , of the suspension is
well approximated by the Carnahan–Starling equation [22]:

4πa3
ef f Pf

3φef f kT
= 1 + φe f f + φ2

ef f − φ3
e f f

(1 − φe f f )3
. (10)

The solid phase follows the equation of state [23]:

4πa3
ef f Ps

3φxe f f kT
= 2.17

0.738 − φxe f f
(11)

where φxe f f is the effective packing fraction in the solid phase. From the osmotic pressure,
the chemical potential of a particle in either phase can be determined as [12]:

µ

kT
=

∫ (
4πa3

ef f P

3φef f kT
− 1

)
dφef f

φe f f
+

4πa3
ef f P

3φe f f kT
+ C (12)

where C is an arbitrary constant. Equating the pressures and the chemical potentials of the
solid and the fluid phases provides the effective volume fractions of the coexisting solid and
fluid phases at equilibrium. These volume fractions are 0.55 and 0.495, respectively. The
fluid phase volume fraction at this equilibrium sets the solubility boundary, φs = 0.495/σ 3,
marking the onset of crystallization. Increasing fractions of the suspension are crystallized as
φ is increased above φs until at φm = 0.55/σ 3 all of the suspension is crystallized.

Two approaches are taken to test the limits of the assumptions made here. First, we
compare predictions of the phase transition boundaries with experimental results. Second,
we compare our predictions with those of more detailed numerical simulations. We present
in figure 1(a) comparisons with the data of Monovoukas and Gast [2] of the location of the
fluid–solid boundary as a function of ionic strength. Monovoukas and Gast determine the
dimensionless surface potential and charge on their particles to be � = 2.49 and Q = 12.82,
respectively. With these values, the interaction parameters in equation (1) are determined as
ε/kT = 0.5(a/ l)�2 and κ = 2[(2N − 3Qφ)/(1 − φ)]1/2, where N = 4πa2l NA[I ] × 103 is
the dimensionless ionic concentration, dependent on the molar ionic strength [I ], Avogadro’s
number, NA , the particle radius, a = 66.7 nm, and l = 7.13 × 10−10 m is the Bjerrum length.
We note that by calculating κ as a function of φ, the model improves on the perturbation theory
of Voegtli and Zukoski by accounting for screening by counter ions. Mapping onto the effective
hard-sphere description to determine φs and φm captures the experimental phase diagram quite
well. The agreement is particularly good at high ionic strengths, where the effective hard-
sphere description is expected to work best. At low ionic strengths, the model underpredicts
the volume fraction at the solubility boundary. Under these conditions, where the screening
length is large (see inset), the tail of the repulsive interactions contributes significantly to
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Figure 1. (a) Fluid–crystal coexistence curves (solid curves) calculated using the effective
hard-sphere model, as described in the text, compared with the experimental data (symbols)
of Monovoukas and Gast [2] as a function of ionic strength of KCl. The lower curve
corresponds to φse f f = 0.495 and the upper curve, φme f f = 0.55. The open symbols represent
fluid conditions, semi-filled symbols, fluid–crystal coexistence, and filled symbols, completely
crystalline conditions. The inset shows the inverse Debye screening length at the different ionic
strengths. (b) Fluid–crystal coexistence curves (solid curves) calculated using the effective hard-
sphere model, as described in the text, for ε = 8 and different values of κ , compared with the
simulation data (symbols) of El Azhar et al [8]. The lower curve corresponds to φse f f = 0.495 and
the upper curve, φme f f = 0.55. The inset shows the osmotic pressure calculated using equation (10)
at φe f f = 0.495 compared with the data of El Azhar et al [8].
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the resulting phase behaviour. The perturbation theory calculations of Voegtli and Zukoski
capture the phase behaviour at low ionic strengths much more accurately by accounting for
the effects of the repulsive tail. Even their calculations, however, drastically underpredict the
width (φm − φs) of the coexistence region.

We present in figure 1(b) comparisons of φs and φm for ε/kT = 8 and a range of values of
κ with the recent simulation results of El Azhar et al [8]. Here, κ is assumed to be independent
of φ. We find yet again that the simple hard-sphere description captures the simulation data
quite well. As κ decreases below infinity, φs and φm decrease below their hard-sphere values.
Decreasing κ further, φs and φm reach minima, and for low values of κ , φs and φm increase
upon decreasing κ . The model captures these qualitative trends observed in the simulations.
Quantitatively, the model also captures the simulation data accurately for high κ (>20 for
ε = 8), but fails dramatically for low κ . Also shown in figure 1 is the osmotic pressure of the
suspension at the solubility boundary determined via simulations for ε = 8 and the same range
of values of κ . In this case, the effective hard-sphere description works well for very high κ ,
failing below κ ∼ 50. We therefore expect the effective hard-sphere description to work in
the limit of high κ . Below, we use the effective hard-sphere description assuming κ and ε to
be determined independent of φ in order to understand the kinetics of crystal nucleation in
charged colloidal suspensions.

3. Crystal nucleation kinetics

In a suspension with φ > φs , crystalline clusters nucleate and grow as the result of a competition
between two processes, the aggregation of single particles onto and the dissociation of single
particles from cluster surfaces. Previously, we have developed descriptions of these processes
for hard-sphere suspensions [12, 13]. Here, we extend the descriptions to charged systems.

3.1. Aggregation rate

We consider a crystalline cluster of radius R in a suspension with background particle volume
fraction φ. Single particles arrive from the bulk suspension onto the surface of the cluster at
a rate β = β(R, φ). To determine β, we note that when particles compact to form clusters, a
zone is created around every cluster that is depleted of particles. That this description applies
to charged systems is indicated by the direct observations of Gasser et al [20], who found the
packing fraction in crystalline clusters to be higher than in the surrounding bulk suspension.
The particle volume fraction at large distances from the cluster surface equals the bulk volume
fraction, φ. A volume fraction gradient is thus established from the surface of the cluster to
the bulk suspension. Particles diffuse down this gradient at a rate that is determined by solving
the diffusion equation. The result is [12, 13]:

β=
3R

a3

(
1 +

aef f

R

) ∫ φ

φR

D(φ′) dφ′ (13)

where φR , discussed below, is the packing fraction of particles on the cluster surface, and D(φ)

is the gradient diffusivity of the particles given by:

D(φ) = Do KD(φ)TD(φe f f ) (14)

where Do = kT/6πηa is the Stokes–Einstein diffusivity, with η the solvent viscosity.
Recognizing that the effective hard-sphere description captures the thermodynamics of charged
colloidal suspensions, the thermodynamic contribution to the diffusivity, TD, is evaluated at



Pseudo-steady rates of crystal nucleation in suspensions of charged colloidal particles 1539

φe f f and is given by [1, 12, 13]:

TD(φe f f ) = d

dφef f
[φef f Z(φe f f )] (15)

where Z(φef f ) = 4πa3
ef f Pf /φe f f kT and is calculated using equation (10).

The key difference between the description developed here and that developed for hard
spheres lies in the description of hydrodynamic interactions. The no slip boundary condition
characterizing the hydrodynamic drag occurs at the core particle surface and therefore depends
on φ as opposed to φef f and is approximated as [1, 12, 13]:

KD(φ) = (1 − φ)−K2 (16)

where the exponent K2 is a function of the interactions between the particles. Russel et al
[1] developed approximations for K2 for charged suspensions by assuming that the particles
interact via an excluded shell potential. Here, following Russel et al, we write:

K2 = −6σ 2 + 1 − 15

8σ
+

9

64σ 3
+

107

640σ 5
+ �(σ−7) (17)

where σ = aef f /a. Note that K2 = −6.567 when σ = 1, yielding the hard-sphere limit. For
charged sphere suspensions, this description has been tested in the dilute limit by measuring
the particle diffusivity using scattering techniques [1, 24]. Here, we assume this description to
also hold for dense suspensions. Combining equations (13)–(17) yields the aggregation rate,
β, of particles onto a cluster surface.

3.2. Dissociation rate

To determine the dissociation rate, particles on a cluster surface are assumed to reside in
potential energy wells because of their bonds with their nearest neighbours. As in hard-
sphere suspensions, the strength of interparticle bonds on a cluster surface is determined by
the potential of mean force [12, 13]. The latter potential is calculated using the effective
packing fraction of particles on the cluster surface, φRef f = σ 3φR , where φR is given by
equation (20) below. The motion of surface particles in their potential wells is described by
the Smoluchowski equation. Solving the Smoluchowski equation using the mean first passage
time analysis, the rate α at which particles dissociate from the cluster surface is determined to
be [12, 13]:

α = 6ωDoφRef f R

a3
ef f

[1 − (1 − aef f /R)3]

[1 − aef f /2R]

[1 + aef f /R]2

[(1 + aef f /R)3 − 1]

[
(1 − φRef f )

3

(1 − φRef f /2)

]Cs −C f

(18)

where Do is the Stokes–Einstein diffusivity of the particles, and ω is an approximate correction
to Do due to the near field hydrodynamic interactions between the particles on the cluster
surface. For the hard-sphere case, nearest neighbours are assumed to be nearly touching so
that ω = 0.2 provides a good estimate of the hydrodynamic correction [12, 13]. For charged
systems, although the particle centres are arranged in a manner identical to that of hard spheres,
the particle surfaces are sufficiently separated (unless σ ∼ 1) that near field hydrodynamic
interactions can be neglected. Here, we let ω = 1.0 for all our calculations.

The number of bonds, Cs , of a particle on the cluster surface depends on the cluster radius,
R, as [12, 13]:

Cs − C f = (Cs∞ − C f )(1 − exp{ζ(Rmin − R)/2aef f }) (19)

and determines the depth of the potential well in which the surface particles reside. Here, Cs∞
is the number of nearest neighbours of a particle on the surface of an infinitely large cluster and
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C f is the number of nearest neighbours of a particle in the fluid. Rmin = aef f (2/0.74)1/3 is the
radius of the smallest possible cluster, i.e., containing two particles. The above form for Cs(R)

is an empirical interpolation, where the parameter ζ controls the rate of increase of Cs from
C f to Cs∞ as R increases. This parameter can, in principle, be determined independently. In
addition, ζ is related to the curvature dependence of the solid–fluid surface tension [12, 13].
However, this latter dependence for charged colloidal systems is not known. For hard-sphere
systems, ζ = 0.9 results in a good comparison of experimental estimates and model predictions
of several measures of crystal nucleation kinetics [13]. Here, we assume this value to hold
for charged systems as well. Similarly, for hard-sphere suspensions, Cs∞ is determined from
knowledge of the interfacial tension of an infinitely large crystalline surface in equilibrium
with the bulk suspension at the solubility boundary. Again, since such information for charged
systems is not available, we proceed with the hard-sphere value, Cs∞ − C f = 2.0, for the
present calculations [13]. We note that use of the hard-sphere values for the parameters ζ and
Cs∞ − C f is an approximation, but is reasonable since we expect the effective hard-sphere
description to successfully describe particle packing profiles on cluster surfaces in charged
systems.

Extending the hard-sphere description, we let the packing fraction of particles on a cluster
surface, φR , depend on φ as [12, 13]:

φRe f f = φRSef f + (0.64 − φRSef f ) exp{ξ(φef f − 0.64)/(φef f − 0.495)} (20)

where φRe f f = φRσ 3, and φRSef f is the value of φRef f when φ = φs (or when φe f f = 0.495).
Again, the form for φR is an empirical interpolation where the parameter ξ characterizes how
the density of particles in the surface layer changes with the suspension volume fraction. This
parameter is related to the volume fraction dependence of the solid–fluid surface tension, and
drawing from the hard-sphere value [13] for lack of further information we set ξ = 1.0 for the
present calculations.

To determine φRSef f , we note that only infinitely large clusters are stable at the solubility
boundary. The stability of clusters is determined by the relative values of the aggregation and
dissociation rates, β and α, respectively. In general, when φ > φs , β < α for small clusters
and vice versa for large clusters. The critical cluster size, R∗, is defined as that size at any φ

at which β = α. Clusters smaller than the critical size tend to shrink, whereas larger clusters
tend to grow. At the solubility boundary, R∗ diverges. Thus, writing β = α as R → ∞ for
φ = φs yields: ∫ φs

φRS

D(φ′)
Do

dφ′ = 2ωφRS

[
(1 − φRSef f )

3

1 − φRSef f /2

]Cs∞−C f

(21)

where φRS = φRSef f /σ
3, and D(φ) is given by equations (14)–(17). Solving this equation

determines φRS , thereby allowing the calculation of both the aggregation and dissociation rates
as functions of R, φ, ε and κ .

3.3. Pseudo-steady nucleation rate

As φ increases above φs , the critical cluster size, R∗, decreases to finite values of R and stable
crystalline clusters form. At any φ/φs > 1, the rate at which clusters of the critical size form
is taken as the nucleation rate. As crystallization progresses, a distribution of cluster sizes is
established in the suspension. Detailed population balance models, allowing for the evolution
of the cluster size distribution (and drop in monomer concentration as more and larger clusters
are formed), demonstrate that, after a transient period, the nucleation rate attains a steady
value [13]. Standard approaches based on free energies of cluster formation assume that the
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background monomer volume fraction, φ, stays constant as crystals nucleate [25]. However,
population balance equations that conserve the mass of particles in the suspension indicate that
as crystallization progresses, φ (the concentration of monomers not in clusters) quickly reduces
to a lower value φplat and remains constant at this value for a significant period of time [13].
Calculations of steady state nucleation rates assuming that φ is reduced to φplat result in much
better comparisons with experiments than calculations that assume φ to remain constant [13].
Thus without solving detailed population balance equations, a good estimate of the nucleation
rate at φ can be obtained by calculating the nucleation rate at φplat (φ). At any value of φ, φplat

is estimated by assuming that all of the particles are either monomers or dimers. A steady
distribution of monomers and dimers is then postulated and the concentration of monomers,
φplat , is found by assuming that equilibrium is established. The resulting balance yields [13]:

φplat = φ

1 + 2β(1,φplat )

α(2,φplat )

[
1 − φ

φx (φplat)

] (22)

where β(1, φplat) and α(2, φplat ) are the rates of the aggregation of pairs of monomers and
the dissociation of dimers, respectively. As the population of trimers and higher aggregates is
smaller than monomers and dimers for much of the nucleation process,equation (14) is found to
provide an excellent estimate of the pseudo-steady-state monomer concentration [13]. Further,
φx = φxe f f /σ

3, where φxe f f , the effective packing fraction in the solid phase, is obtained by
assuming all clusters to be in mechanical equilibrium with the surrounding fluid [12, 13]. From
the known equations of state for the solid and fluid phases, this yields:

φxe f f = 0.738

1 + 2.17(1−φe f f )
3

(1+φef f +φ2
e f f −φ3

e f f )φe f f

. (23)

At any φ, the steady state nucleation rate is then estimated by the equation [12]:

J (φ) = 3βφplat

8πa3

(
w′′(g∗)

π

)1/2

exp(2w(g∗)) (24)

where

w(g) =
∫ g

0

β − α

β + α
dg. (25)

with g = φxe f f (R/aef f )
3 and g∗ = φxe f f (R∗/aef f )

3. Here, α, β, and R∗ are calculated at
φplat (φ).

4. Model calculations

We present in figure 2 calculations using equation (24) of the pseudo-steady-state nucleation
rate, J , as a function of the effective hard-sphere volume fraction, φe f f , for different values of
ε at a fixed value of κ = 10. For φe f f > 0.495, the size ratio, σ , the effective plateau volume
fraction, φplat , and the critical cluster size, R∗, are plotted as functions of φef f in figures 3–
5, respectively, for all the cases considered in figure 2. Where relevant, the corresponding
quantities for the hard-sphere case are also presented for comparison. The inset in figure 4
shows how φs changes with ε for κ = 10.

Interestingly, we find that nucleation rates vary non-monotonically upon increasing ε at
a fixed κ : as shown in figure 2, at a fixed φef f , J first decreases below the hard-sphere value
and then increases upon increasing ε. For large increases in ε, J appears to saturate, as in
figure 2 for ε/kT = 60. The location of the maximum in the nucleation rate, which occurs
at φ ∼ 0.55 for hard-spheres, gradually shifts to higher values of φe f f as ε increases. Below,
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Figure 2. Nucleation rates calculated using equation (24) as functions of (a) the effective hard-
sphere volume fraction and (b) the actual particle volume fractions for κ = 10 and different values
of ε.

we explain these observations based on our description of the underlying particle aggregation
and dissociation processes for purely repulsive systems.

The decrease in J below the hard-sphere value is attributed to the near field hydrodynamic
interactions between the particles on cluster surfaces. These interactions determine the
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diffusivity of particles in the potential wells holding them on cluster surfaces and therefore
affect the rate of particle dissociation, α, given by equation (18) above. For hard spheres, the
hydrodynamic interactions are assumed to reduce the particle diffusivity on the cluster surface
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to 20% of the Stokes–Einstein diffusivity, as indicated by the value of 0.2 chosen for ω in
equation (18). For charged spheres interacting with the excluded shell potential, near field
hydrodynamic interactions are assumed to be absent and ω is set to 1. At a fixed value of φe f f ,
the dissociation rate α is therefore higher for charged systems than for hard spheres. This
makes crystal nucleation difficult and J decreases as ε/kT increases from 0 to 10 at a fixed κ

in figure 2.
Increasing ε/kT beyond 10 (in figure 2), near field hydrodynamic effects play no role as

ω remains fixed at 1. However, an increase in σ = aef f /a, as shown in figure 3, results. At any
φe f f , as indicated in equation (15), the thermodynamic contribution to the particle diffusivity
is independent of σ . Combining equations (16) and (17), the hydrodynamic contribution may
be written up to the leading order term in 1/σ as KD(φ) = 1 − 6φef f /σ . Thus, at a fixed φe f f ,
KD(φ) increases upon increasing σ . In other words, particles diffuse faster as their true size
gets smaller at a fixed effective hard-sphere size. The result is that at any φef f , the particle
aggregation rate, β, increases upon increasing ε at a fixed κ . This increase in β causes J to
increase as ε increases (beyond 10 in figure 2) for fixed κ .

The above effects also explain the gradual shift of the location of the maximum in J to
higher φef f upon increasing ε in figure 2. For hard-sphere suspensions, the maximum occurs
at φ ∼ 0.55. As discussed before, this is the result of a competition between thermodynamic
and particle crowding effects: J increases upon increasing φ above φs due to an increasing
thermodynamic driving force. Approaching φ = 0.64, however, where particles are randomly
close packed, the gradient in the concentration of particles from the bulk suspension to cluster
surfaces vanishes. The aggregation rate of particles is therefore greatly diminished and J drops.
The result is a maximum in J at φ ∼ 0.55. For charged suspensions, the same competition
exists except that dependencies of α and β on φe f f are altered due to changes in σ . Increasing ε

at fixed κ results in an increase in KD(φ) as discussed above. In order for β to remain constant,
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Figure 6. Nucleation rates calculated using equation (24) as functions of the effective hard-sphere
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the increase in KD(φ) must be compensated by a lower concentration gradient, which requires
a higher φef f , i.e., φef f closer to 0.64. The maximum in the nucleation rate is therefore shifted
to higher values of φe f f as σ increases, which in figure 2 is produced by increasing ε.

We note that the reduction in J upon increasing ε from 0 to 10 is the result of approximating
particle interactions using an excluded shell potential. In general, one expects the near field
hydrodynamic interactions to be reduced gradually upon increasing σ until they vanish for
σ � 1. The excluded shell model is rigorously applicable only for σ � 1. Its use in our
calculations, where σ ∼ 1, introduces uncertainties in the quantitative estimates of J . The
qualitative trends predicted, however, are based on reasonable descriptions of the particle
aggregation and dissociation processes and are expected to hold.

Next we present in figure 6 calculations of J using equation (24) for different values of κ at
a fixed value of ε = 20. We find J to vary much more sensitively with κ than ε. Again, J first
decreases below the hard-sphere value upon decreasing κ (hard spheres correspond to κ = ∞)
due to the absence of near field hydrodynamic interactions. Decreasing κ further causes an
increase in J up to κ = 10. This is due to an increase in σ which causes an increase in β as
described above. The location of the maximum in J also shifts to higher φe f f . Decreasing κ

below 10, however, causes a reversal of these trends. J begins to decrease and the location of
the maximum shifts to lower φef f .

To understand this reversal, we present in figure 7 calculations of σs , the value of σ at
the solubility boundary φe f f = 0.495, for different values of ε and κ . Here, σs is determined
by solving equations (1)–(9). As expected, at any κ , σs increases with ε, and at any ε, σs

increases upon decreasing κ . However, decreasing κ below a certain ε dependent value, which
we denote κmin , produces a reversal in the trend and σs begins to decrease. (At any ε, κmin

may be defined as that value of κ at which σs attains its maximum for that ε.) Thus, at a fixed
ε, decreasing κ causes φs to decrease first (κ > κmin) and subsequently increase (κ < κmin)
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Figure 7. Ratio of the effective hard-sphere size to the particle size calculated using equations (1)–
(9) at the solubility boundary as a function of κ=10 for different values of ε. The inset shows the
corresponding volume fractions at the solubility boundary.

(inset in figure 7). This subsequent decrease in σs upon decreasing κ below κmin explains the
reduction in the nucleation rates, J , observed in figure 6 for κ < 10. As σ decreases, KD(φ)

becomes smaller at any φe f f and causes β to decrease. The result is a decrease in J upon
decreasing κ below 10 in figure 6. Auer and Frenkel [19] also observed nucleation rates to
first increase and then decrease upon decreasing κ at a fixed ε. The latter decrease is attributed
to the non-monotonic variation of φs with κ at a fixed ε, which is also observed in simulations
of the phase behaviour of Yukawa particles [8] as shown in figure 1.

To understand the shift in the location of the maximum in J under these conditions,
we present in figure 8, changes in σ , i.e., the effective hard-sphere size of the particles, with
increasing φef f for all the cases considered in figure 6. As expected, σ decreases monotonically
upon increasing φe f f for all values of κ . At any φe f f , σ increases upon decreasing κ up to 10
and then begins to decrease. This is consistent with the observation in figure 7 that φs first
decreases (κ > κmin) and then increases (κ < κmin) upon decreasing κ at a fixed ε. Thus at
any φef f , the actual volume fraction φ increases as κ decreases below κmin . Correspondingly,
KD(φ) decreases and particles diffuse more slowly, with the result that maximum in J shifts
to lower φe f f .

The above discussion of model calculations explains the variation of nucleation rates with
the strength and the range of particle repulsions and points to the rich physics underlying the
kinetics of crystal nucleation in charged colloidal suspensions. To test this description, we
turn next to a comparison of model calculations with experiments and simulations.

5. Comparisons with experiments and simulations

The kinetics of crystallization in hard-sphere suspensions has been well studied [2, 9], but
few experiments have been reported on charged colloidal suspensions. Here, we compare
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our predictions with the experiments of Dhont et al [16], who investigated crystallization
kinetics in charged silica suspensions. The phase boundary for their system occurs at
φs ∼ 0.194. They estimate the Debye screening length at the solubility boundary to be
43 nm. Since their particles are ∼160 nm in radius, this yields the Yukawa parameter
κ ∼ 320/43 = 7.44. The effective hard-sphere radius at the solubility boundary is given
by the ratio σs ∼ (0.495/0.194)1/3 = 1.367. Thus, to mimic their experimental conditions,
we choose the other Yukawa parameter, ε, to yield σs ∼ 1.367 for κ = 7.44. We find that
σs = 1.37 for ε = 37.0. We calculate nucleation rates using equation (24) for these values of
κ and ε and compare with the experiments of Dhont et al in figure 9.

The experimental data presented in figure 9 has been obtained from the nucleation rates
reported by Dhont et al as follows. Dhont et al measure the intensity of light scattered by
a crystallizing sample as a function of time. Typically, after an initial transient period, the
intensity rises at a fixed, concentration dependent, rate and eventually reaches a plateau. The
duration of the transient period is taken as an induction time. From the plateau intensity at
long times, the number of crystals, assumed to be of a constant size, in the scattering volume
is determined. Assuming that all these crystals nucleate during the transient period, the ratio
of the number of crystals and the induction time is reported as the nucleation rate (in units
of s−1). To compare with model calculations, we divide the reported rates with the scattering
volume (50–300 mm3) and then non-dimensionalize the rates with (2a)5/Do, where we use
the reported value of a = 160 nm and estimate Do = 1.5 × 10−8 cm2 s−1 for their particles
suspended in a mixture of ethanol and toluene.

As shown in figure 9, the model captures the qualitative features of the experimental
nucleation rates. The maximum in the nucleation rate observed for hard spheres is no longer
seen and both model calculations and experimental estimates of nucleation rates increase
monotonically with φ. Model calculations do predict the maximum, however, but at a value
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of φ outside the range of the experiments. This explains why the maximum in the rates is not
observed in some of the experiments on charged systems. Quantitatively, the model predicts
a much sharper rise in the nucleation rates with φ than is observed in the experiments. For
instance, increasing φ from 0.2 to 0.215, the model predicts an increase in J of nearly 20 orders
of magnitude, whereas experimentally, J is observed to increase by 6–8 orders of magnitude.
One reason for this discrepancy might be the uncertainty in our knowledge of φs . Nucleation
rates change very steeply for φ ∼ φs , whereas the change is more modest at higher φ.

To account for this uncertainty, we present additional calculations using ε = 40.0 and
κ = 7.44, which yield σs = 1.38, lowering the value of φs from the value at σs = 1.37 by
2%. Model predictions of nucleation rates with these parameter values are in much better
agreement with the experiments. Nevertheless, significant quantitative discrepancies exist,
with the model generally overpredicting experimental nucleation rates.

The reasons for the quantitative discrepancies between model predictions and experimental
estimates of J are several. Light scattering inherently measures the cumulative effect of all
the clusters present in the crystallizing sample. Deconvoluting the measured intensities to
nucleation rates is ridden with severe uncertainties. Similarly, linking induction times to
underlying nucleation events is extremely difficult. We have recently developed a population
balance model that establishes precise links between model parameters and experimental
measures of nucleation kinetics obtained from light scattering techniques [13]. From these
links, it is clear that the nucleation rate reported by Dhont et al is a different quantity from
the rate calculated by the present model. Besides, limitations in the model, which we discuss
below, also contribute to the discrepancies in the above comparison.

We turn next to the data of Gasser et al [20], who conducted real space imaging experiments
of crystallizing suspensions of slightly charged particles. We present in figure 10 nucleation
rates reported by Gasser et al, made dimensionless with (2a)5/Do, where we use the reported
value of a = 1.26 µm and estimate Do = 6.9 × 10−14 m2 s−1. The solubility boundary for
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their particles is reported to be 0.38, which corresponds to σs ∼ 1.09. Several combinations
of the Yukawa parameters ε and κ yield this value of σs . We present calculations in figure 10
using four combinations of these parameters and compare them with the data of Gasser et al.
The parameters are chosen such that for any ε, the corresponding value of κ > κmin (see
figure 7). As shown in figure 10, in all cases we find severe discrepancies between model
predictions and experimental estimates, the model this time underpredicting nucleation rates
by tens of orders of magnitude. As shown in figure 10, Auer and Frenkel [19] also find similar
discrepancies between their simulations and the experimental estimates of Gasser et al. They
attribute the discrepancies to a lack of knowledge of the variation of ε and κ with φ.

Finally, we present in figure 11, comparisons of model calculations with the simulation
data of Auer and Frenkel [19]. Of the vast amount of data reported by Auer and Frenkel, we
choose those combinations of ε and κ for which κ > κmin . Differences between the values of
σs calculated using the present formulation and those determined by simulations are prominent
for κ < κmin making comparisons of nucleation rates difficult. We compare our calculations
of nucleation rates with simulations for the following combinations: ε = 8 and κ = 10, and
ε = 20 and κ = 5. Even here, we note that we are stretching the limits of the effective
hard-sphere description.

In figure 11, nucleation rates, J , are presented as functions of φ for each combination
of ε and κ . Model calculations compare well with the simulations. The dependence of J
on φ for small values of φ (before the maximum in J ) is identical for both the calculations
and the simulations. That the curves are laterally shifted (along the φ axis) may be attributed
to the differences in the estimates of φs between our calculations and the simulations. For
ε = 8 and κ = 10, φs = 0.323 according to our calculations, whereas the simulations yield
φs = 0.354. Similarly, for ε = 20 and κ = 5, the two values are 0.210 and 0.262, respectively.
To eliminate this uncertainty in φs in our comparisons of J , we present in figure 12, the data
in figure 11 plotted as a function of φ/φs . Here, model calculations agree quantitatively with
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the simulation data. In particular, we find remarkable agreement for the case of ε = 20 and
κ = 5. For ε = 8 and κ = 10, however, discrepancies exist between our calculations and
simulations. This may be attributed to κ for this case being close to κmin (figure 7). Thus,
from the limited comparisons possible, we conclude that for κ � κmin , uncertainties exist in
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the values of φs determined, but when compared at constant φ/φs , model calculations of J
agree well with simulations. Model predictions are thus in semi-quantitative agreement with
the simulations of Auer and Frenkel.

In addition, we note that our model predictions are in excellent qualitative agreement with
the simulations of Auer and Frenkel, duplicating the dependencies of J on ε and κ observed
in their simulations. At a fixed κ , increasing ε at any φe f f results in an increase in J , which
asymptotes for large values of ε. Decreasing κ at a fixed ε results first in an increase in J
followed by a subsequent decrease. These trends are predicted by the model as shown in
figures 2 and 6. However, differences arise between model predictions and simulations on two
accounts: first, the simulations do not see the maximum in J predicted by the model. This
might be because the simulations are conducted at low values of φ so that only the increasing
portion of the nucleation rate curves is sampled. The second qualitative difference between
model predictions and the simulations is that at any φe f f , the nucleation rates estimated by the
simulations are consistently higher than the corresponding rates for hard spheres. The model,
however, predicts nucleation rates lower than the hard-sphere values due to the effects of near
field hydrodynamic interactions. Resolving this latter difference requires more detailed studies
where particle interactions are carefully tuned near the hard-sphere limit.

The origin of the quantitative discrepancies between model predictions and simulations
may lie in the approximations employed both in the model and in the simulations. Chief
among the former is the use of the effective hard-sphere description, which works only for
very high κ . For lowκ , the description introduces uncertainties in the thermodynamic properties
of charged colloidal suspensions. Further, even for the excluded shell model, the description
of the gradient diffusivity employed (equations (14)–(17)) has only been tested in the dilute
limit. Finally, the use of the hard-sphere values for the parameters Cs∞ − C f , ζ and ξ might
also introduce uncertainties in model calculations.

Approximations in the simulations include the use of an ad hoc scaling for determining the
particle self-diffusivity. Also, inherent in the simulations is the classical description of crystal
nucleation, which is qualitatively different from the description employed in the present model.
The distinction between the two approaches is made evident, as discussed in previous work [12],
by the different dependencies of the critical cluster size on particle volume fraction predicted by
the classical and the kinetic model. Classical nucleation theory determines the critical cluster
size from thermodynamic considerations so that as the supersaturation increases the critical
cluster size monotonically decreases. In the present model, however, the critical cluster size is
determined kinetically and is found to go through a minimum for repulsive systems (figure 5)
as the particle concentration is increased. Unfortunately, the above simulations and other
experiments where the critical cluster size has been measured [26] are restricted to particle
concentrations much smaller than where the minimum is predicted by the kinetic model.

6. Conclusions

We have presented a kinetic model for calculating nucleation rates in charged colloidal
suspensions. The charged particles are treated as effective hard spheres of enhanced sizes
determined by the strength of the coulombic repulsions. A model previously developed for
hard-sphere suspensions is then applied to calculate nucleation rates. Crystal nucleation and
growth are determined as the result of a competition between the rates of single particle
aggregation onto, and dissociation from, cluster surfaces. Developing descriptions of these
processes for charged systems involves a decoupling of thermodynamic and hydrodynamic
effects. The thermodynamic driving force for crystallization is determined by the effective
hard-sphere volume fraction of the particles. Hydrodynamic effects are determined by the
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actual volume fraction of the particles and using the excluded shell potential to represent
particle interactions. Knowledge of particle aggregation and dissociation rates then allows the
determination of pseudo-steady-state nucleation rates.

Intriguing trends in the dependence of the nucleation rate on the particle volume fraction
are predicted as the strength and the range of particle repulsions are varied. At a fixed effective
hard-sphere volume fraction, increasing either the strength or the range of particle repulsions
first causes the nucleation rate to decrease below the hard-sphere value and then increase.
Also, the location of the maximum in the nucleation rate observed for hard-sphere suspensions
gradually shifts to higher effective volume fractions. These trends are understood using
the descriptions of particle aggregation and dissociation processes developed. Preliminary
comparisons indicate qualitative agreement between model predictions and experiments.
Simulations on charged colloidal suspensions are in semi-quantitative agreement with model
predictions. The dependence of the nucleation rate on the strength and the range of particle
repulsions predicted is identical to that observed in the simulations. However, while the
simulations predict nucleation rates in charged systems to be consistently larger than in hard-
sphere suspensions, the model predicts otherwise. Further investigation is essential before the
qualitative trends can be established.
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